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Abstract
We define the notion of ‘diffusion algebras’. They are quadratic Poincaré–
Birkhoff–Witt algebras which are useful in order to find exact expressions for
the probability distributions of stationary states appearing in one-dimensional
stochastic processes with exclusion. One considers processes in which one
has N species, the number of particles of each species being conserved.
All diffusion algebras are obtained. The known examples already used in
applications are special cases in our classification. To help the reader interested
in physical problems, the cases N = 3 and 4 are listed separately.

PACS numbers: 02.10.Hh, 02.10.Yn, 02.20.-a, 02.50.Ey, 64.60.-i

1. Introduction

One-dimensional stochastic processes with random-sequential updating have stationary states
(far away form equilibrium) with very interesting physical properties. One observes phase
transitions about which still little is known. As opposed to equilibrium states where the phase
transitions are essentially a bulk phenomenon, in stationary states, the boundary conditions play
an essential role [1]. One observes bulk induced phase transitions if one looks to problems on a
ring [2], boundary induced phase transitions in the case of open systems [3], or a combination
of both [4]. When dealing with phase transitions, one is interested in exact expressions for the
relevant physical quantities like the current densities (which are zero for equilibrium problems)
and various correlation functions. A major step in this direction was achieved when it was
understood that in certain cases one can use the so-called ‘matrix product states’ approach [1,5].
In our opinion, from a mathematical point of view, this approach was loosely defined (for an
illustration see appendix A). The aim of this paper is to improve upon this situation and, as
a bonus, to give a large number of processes where one can find ‘matrix product states’. We
define a class of quadratic algebras to which we have coined the name ‘diffusion algebras’.
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We also show how to construct all of them. We believe that in this way one can bring some
mathematical ‘beauty’ in what was not, up to now, a systematic approach.

We start with the physical problem in order to explain the motivation of our mathematical
work.

In this paper we consider a restricted class of processes in which we take N species of
particles with N − 1 conservation laws in the bulk. We take a one-dimensional lattice with
L sites and assume that one has only nearest-neighbour interaction with exclusion (there can
be only one particle on a given site). In the time interval dt only the following processes are
allowed in the bulk:

α + β → β + α (α, β = 0, 1, . . . , N − 1) (1.1)

with the probability gαβ dt (gαβ � 0). Equation (1.1) is a symbolic equation used by physicists.
Its meaning is that the particles α and β on successive sites exchange their places. Obviously
the number of particles nα of each species α are conserved (

∑N−1
α=0 nα = L). One is interested

in the probability distribution P(α1, α2, . . . , αL), (αk = 0, 1, . . . , N − 1) for the stationary
state. In order to obtain it, in the matrix product approach, one considers N matrices Dα and
N matrices Xα acting in an auxiliary vector space and satisfying the following relations [6]:

gαβDαDβ − gβαDβDα = 1
2 {Xβ, Dα} − 1

2 {Xα, Dβ}
[Dα, Xβ] = −[Dβ, Xα].

(1.2)

In equations (1.2) {., .} represent anti-commutators.
If one considers processes on a ring (periodic boundary condition), the un-normalized

probability distribution has the following expression [7]:

P(α1, α2, . . . , αL) = Tr(Dα1Dα2 . . .DαL). (1.3)

Notice that the matrices Xα do not appear in equation (1.3). The expression of the probability
distribution is special in at least two ways. As a consequence of the conservation laws,
equation (1.3) connects only monomials with the same numbers n0, n1, . . . , nN−1 of generators
D0,D1, . . . ,DN−1. This implies that one can use different matrices for monomials for different
values of the set n0, n1, . . . , nN−1. This observation is important since for example, a given
infinite-dimensional representation can have a finite trace for certain class of monomials but
can diverge for another class of monomials. In order to use equation (1.3), for the latter one can
use a different representation which for example, is traceless for the first class of monomials
but has a finite trace for the second class. This problem will be explained in detail in [8].

On the other hand if different representations can be used for all monomials one has the
remarkable property that up to a factor (the expression (1.3) does not contain a normalization
factor), the traces are independent on the representations one uses. For concrete calculations
one therefore takes the representation with the smallest dimension.

If one considers open systems, the bulk processes have to be completed by boundary
processes (they break the conservation laws). On the left side of the chain (site 1) and on the
right side of the chain (site L) we assume that in the time interval dt , the particle α is replaced
by the particle β:

α −→ β (1.4)

with the probabilities

Lα
β d t respectively Rα

β d t. (1.5)
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The matrices appearing in (1.5) are intensity matrices [9] for which the diagonal elements are
given by the non-diagonal ones

Lα
α = −

∑
β �=α

Lα
β Rα

α = −
∑
β �=α

Rα
β . (1.6)

The non-diagonal matrix elements are non-negative.
For open systems, the un-normalized probability distribution functions are given by a

matrix element in the auxiliary vector space

P(α1, α2, . . . , αL) = 〈0| Dα1Dα2 . . .DαL |0〉 (1.7)

where the bra (ket) state 〈0| (respectively |0〉) are given by the following conditions:

〈0| (Lβ
α Dβ + Xα) = 0 (Rβ

α Dβ − Xα) |0〉 = 0. (1.8)

The expressions (1.3) and (1.7) for the probability distributions are of little use unless one
finds matrices which satisfy the conditions (1.2) and have a trace, or one finds matrices which
satisfy (1.2) and have the property (1.8). In a very nice paper [10] it was shown that for
arbitrary bulk and boundary rates one can in principle construct infinite-dimensional matrices
which satisfy the conditions (1.2) and (1.8) (if they also have finite traces is unclear). It is
however practically impossible to obtain explicit expressions for these matrices. It is also not
clear which supplementary relations besides (1.2) they satisfy. In other words, the algebraic
structure behind the relations (1.2) is obscure.

In this paper we adopt a different approach. We start by searching for quadratic algebras
which are of PBW type (this notion is explained in the beginning of section 2) with a structure
which is understood and look for those bulk rates for which a simplified version of the
relations (1.2) exist. Then we look to boundary conditions compatible with the simplified
version of equation (1.8). We make the ansatz

Xα = xα e (1.9)

where e acts as a unit element on Dα

eDα = Dα e = Dα (1.10)

and xα are c-numbers. With this ansatz, instead of equation (1.2) one obtains N(N − 1)/2
relations for the matrices Dα:

gαβDαDβ − gβαDβDα = xβDα − xαDβ (1.11)

and instead of equation (1.8) one obtains

〈0| (Lβ
α Dβ + xα e) = 0 (Rβ

α Dβ − xα e) |0〉 = 0. (1.12)

Taking into account the relations (1.6), one has
N−1∑
α=0

xα = 0.

The consequence of the ansatz (1.9) will be that we will not be able to find expressions
for the probability distributions for arbitrary bulk and boundary rates. Further limitations on
the possible bulk rates will appear when we ask for the relations (1.11) to define quadratic
algebras of PBW type. This implies that the ordered monomials

Dn0
N−1 Dn1

N−2 · · · DnN−1

0 (1.13)

form a basis in the algebra. Algebras of this type will be called ‘diffusion algebras’.
Once the algebras are known, we can ask if they are also useful for applications to stochastic

processes. First one has to find for which algebras one can choose all the gαβ non-negative.



5818 A P Isaev et al

Next, since the relation (1.11) gives recurrence relations among traces of different monomials,
one has to find in which cases one has not only the trivial solution for these recurrence relations
(all the traces vanish). These cases can be used to study stochastic processes on a ring.
Finally, one has to find for which boundary matrices one can find representations for which the
conditions (1.12) are satisfied. This is not a trivial exercise. For the cases for which one finds
solutions, one can get then the expression of the probability distribution for the open system.

We would like to give a supplementary argument which motivated us to look for PBW
algebras. Interesting physics appears when one has only infinite-dimensional representations
either for the ring problem or for the open system [1,2,5]. The PBW algebras have at least one
infinite-dimensional representation (the regular one), which does not mean that, in general,
they do not also have finite-dimensional ones.

In this paper we concentrate on the diffusion algebras only. In a sequel [8] we will discuss
in more detail the representation theory. We will also not look for physical applications except
for stressing the cases when the rates gαβ cannot be chosen non-negative.

In section 2 we will show that in order to have a diffusion algebra, the gαβ and xα have
to satisfy certain identities which are the equivalent of the Jacobi identities for the structure
constants in the case of Lie algebras4. It is remarkable that, as we are going to show in the next
sections, we are able to find all the solutions of these identities. Inspecting the equations (1.11)
one notices that if some of the xα are not zero they can be rescaled in the definition of the
generators Dα . The number of non-vanishing xα will play an important role in the classification
of diffusion algebras.

In section 3 we consider the case N = 3 corresponding to the three species problem (the
case N = 2 is well known [11]). The case N = 3 is not only interesting on its own but is
relevant for understanding the case for arbitrary N described in section 4. We are going to
recapture all the known examples [2,9,12,13] which are interesting for applications and get a
few new algebras which are interesting on their own.

We would like to mention that the case N = 3 was approached previously from two other
points of view. In [9], one has looked directly to the open system, and classified the type of
boundary matrices appearing in equation (1.12). This is possible since the boundary matrices
are intensity matrices which, as explained in [9], have special properties. Next, one has looked
for bulk rates (see equation (1.11)) compatible with the boundary conditions. The problem
on the ring was considered in [12]. Here one has asked which relations (1.11) are compatible
with the trace operation and one has given the smallest representations (this was enough for
applications).

In appendix A we present an instructive different (although equivalent) approach to obtain
part of the diffusion algebras for N = 3. We also show a natural way to define a quotient of
one of the algebras.

In section 4 we consider the case of N generators. First we give seven series of algebras
and then present a theorem which allows one to find all the diffusion algebras of PBW type.
The proof of this theorem would imply a long discussion and would not fit in this paper which is
also aimed at physicists who are not necessarily interested in combinatorics. We have therefore
decided to publish it separately. Some algebras are not suitable for applications to stochastic
processes (they are not compatible with positive rates).

In order to help the reader who is interested in applications and not in mathematics, in
appendix B we list the diffusion algebras with positive rates for N = 4. In section 5 sev-
eral physically meaningful generalizations of the diffusion algebras are discussed. A possible
connection between diffusion algebras and quantum Lie algebras is also pointed out.

4 Correctly speaking, we mean universal enveloping algebras of Lie algebras.
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2. Diamond conditions

We shall search for PBW-type associative algebras which are generated by the unit e and the
elements Dα , α = 0, 1, . . . , N − 1 satisfying N(N − 1)/2 quadratic-linear relations given
by (1.11).

The PBW property (see, e.g., section 3 of the [14]) implies that given a set of generators
{Dα}, one can express any element of the algebra as a linear combination of ordered monomials
in Dα . Furthermore, all the ordered monomials are assumed to be linearly independent5.

For concreteness let us fix an alphabetic order

Dβ > Dα if β > α. (2.1)

Then, a linear basis for the PBW-type algebra is given by the unit e and the set of monomials

Dn1
α1

Dn2
α2
. . .Dnk

αk
k = 1, 2, . . . (2.2)

where α1 > α2 > · · · > αk and n1, n2, . . . , nk are arbitrary positive integers.
Imposing the PBW condition for the diffusion algebra (1.11) we first demand

gαβ �= 0 ∀ α < β (2.3)

in order to be able to express any polynomial in Dα as a linear combination of the basic
monomials (2.2).

Next, using (1.11) one can reorder any cubic monomial DαDβDγ → DγDβDα , where
α < β < γ in two different ways:

DαDβDγ

�
�✒

❅
❅❘

DαDγDβ

DβDαDγ

✲

✲

DγDαDβ

DβDγDα

❅
❅❘

�
�✒

DγDβDα .

Demanding the coincidence of the resulting expressions for DαDβDγ in terms of ordered
monomials one obtains the relation

xα gγβ(�αβγ + �γβ)DγDβ + xβ gγα(�αβγ + �αγ )DγDα

+ xγ gβα(�αβγ + �βα)DβDα + xαxβ(gγα − gγβ − �αβγ )Dγ

+ xαxγ (gγβ − gβα)Dβ + xαxβ(gβα − gγα + �αβγ )Dα = 0 (2.4)

which results in the following six conditions for the gαβ and the xα

xα gγβ(�αγ − �αβ) = 0 (2.5)

xβ gγα(�βγ + �αβ) = 0 (2.6)

xγ gβα(�αγ − �βγ ) = 0 (2.7)

xβxγ (�βγ + gαβ − gαγ ) = 0 (2.8)

xαxγ (gβα − gγβ) = 0 (2.9)

xαxβ (�αβ + gβγ − gαγ ) = 0 ∀ α < β < γ. (2.10)

In equations (2.4)–(2.10) we have introduced the notation

�αβ := gαβ − gβα �αβγ := �αβ + �βγ + �γα. (2.11)

One can show that the conditions (2.5)–(2.10) are necessary in order to avoid linear
dependences between ordered quadratic (or even first order) monomials in Dα , Dβ and Dγ .

5 The term PBW is due to Poincaré et al [15] who describe a linear basis in a universal enveloping algebra.
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One can improve this result applying the diamond lemma [14] to our concrete case. Namely,
the algebra (1.11) possesses the PBW property iff the conditions (2.5)–(2.10) are fulfilled. We
will refer relations (2.5)–(2.10) as ‘diamond conditions’ in what follows.

In the next sections we are going to find the solutions of the diamond conditions first for
the case N = 3 and then in the general case.

3. Classification of diffusion algebras with 3 generators

The classification of diffusion algebras generated by an arbitrary number N of elements Dα

proceeds as follows.
First, one notes that any subset of k < N elements Dα generates a subalgebra of (1.11)

which is again a diffusion algebra. So, it looks natural to begin with minimal size subalgebras
produced by three generators (for the case of two generators one does not have any nontrivial
diamond conditions to solve). Then, a closer inspection of the diamond relations (2.5)–(2.10)
shows that they would be fulfilled for the whole algebra (1.11) provided that they are satisfied
for all the minimal size subalgebras.

So, we shall start by classifying diffusion algebras generated by three elements
Dα,Dβ,Dγ , α < β < γ . It is natural to fix the values of indices as α = 0, β = 1,
γ = 2 (this choice is adopted in appendix A). Here however we will not assign concrete values
to the indices α, β and γ keeping in mind that for general N > 3 α < β < γ may denote any
triple of indices from the set 0, 1, . . . , N − 1.

Depending on how many of the parameters xα, xβ, xγ take nonzero values the classification
falls into four cases. Namely, when all three parameters xα, xβ and xγ are nonzero we obtain
the algebras of type A. If one of the x is zero and the remaining two are not equal to zero we
have the algebras of type B. The algebras with only one nonzero parameter x and those with
all x zero are called algebras of type C and respectively D.

Now we consider in details the algebras of type A–D.

Case A. All xα, xβ and xγ are nonzero.
Equations (2.8)–(2.10) give us two constraints

gβα = gγβ = gαβ + gβγ − gαγ . (3.1)

Then, there are two possibilities.
(1) If gβα = gγβ �= 0, the equations (2.5) and (2.7) give �αγ = �αβ = �βγ whereof one

obtains

gγα = gβγ = gαβ. (3.2)

In view of (2.3) one has gγα �= 0 and, therefore, from equation (2.6) one obtains

�βγ = −�αβ. (3.3)

Finally, from (3.1), (3.2) and (3.3) one concludes

gij = g �= 0 ∀ i, j ∈ {α, β, γ }. (3.4)

The corresponding AI -type algebra is

AI g [Di , Dj ] = xj Di − xi Dj ∀ i �= j ∈ {α, β, γ } g �= 0. (3.5)

These are relations of Lie algebraic type. By rescaling the generators Di → xi
g
Ei one can

remove all the parameters from (3.5) and obtain

[Ei, Ej ] = Ei − Ej .
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(2) If gβα = gγβ = 0, using equation (3.1) one transforms the only remaining nontrivial
equation (2.6) as

gγα(�βγ + �αβ) = gγα(gβγ + gαβ) = gγαgαγ = 0 ⇒ gγα = 0.

The corresponding AII -type algebra is

AII

gijDiDj = xj Di − xi Dj ∀ i < j ∈ {α, β, γ }
where gij := gi − gj gi �= gj ∀ i �= j.

(3.6)

The parameters gi (i ∈ {α, β, γ }) introduced in equation (3.6) above are defined up to a
common shift gi → gi + c.

This algebra is invariant under the transformation

D′
i = Di +

xi

gi − y
g′
i = 1

y − gi
x ′
i = xi

(y − gi)2

where y is an arbitrary parameter. As explained in appendix A, the algebra (3.6) has a natural
quotient [Dβ, Dγ ] = 0. We would like to mention that this algebra is already known [13].

Note that the algebras AI and AII can directly be extended to the case i, j =
0, 1, 2, . . . , N − 1 for N > 3 (they correspond to the algebras AI (N) and AII (N) discussed
in section 4).

Case B. Among the coefficients xα , xβ and xγ one is equal to zero.
Let xα, xγ �= 0 xβ = 0. In this case, equations (2.6), (2.8), (2.10) become trivial and

equation (2.9) gives

gβα = gγβ. (3.7)

There are two ways to satisfy the remaining equations (2.5) and (2.7).

(1) Equations (2.5) and (2.7) are satisfied if one chooses �αγ = �αβ = �βγ =: � which, in
view of (3.7), leads to

gαβ = gβγ gγα = gαγ + gβα − gαβ. (3.8)

The corresponding algebra is

B(1)

gβ DαDβ − (gβ − �) DβDα = −xαDβ

g DαDγ − (g − �) DγDα = xγDα − xαDγ

gβ DβDγ − (gβ − �) DγDβ = xγDβ ∀ g gβ �= 0.

(3.9)

Here for sake of future convenience we have parametrized the bulk rates via gβ , g and �.
The algebra (3.9) is also known [9, 12].

(2) If gγβ = gβα = 0, then equations (2.5), (2.7) are trivially satisfied and the algebra reads

B(2)

gαβ DαDβ = −xαDβ

gαγ DαDγ − gγα DγDα = xγDα − xαDγ

gβγ DβDγ = xγDβ ∀ gαβ, gαγ , gβγ �= 0.

(3.10)

This algebra can be found already in [9, 12]. Notice that if one takes gβ = � in
equation (3.9) one obtains a special case of the algebra B(2) (equation (3.10)).
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We will not repeat the same considerations for the cases xα, xβ �= 0, xγ = 0 and
xβ, xγ �= 0, xα = 0. The resulting algebras are

g DαDβ − (g − �) DβDα = xβDα − xαDβ

gγ DαDγ − (gγ − �) DγDα = −xαDγ

(gγ − �) DβDγ − gγ DγDβ = −xβDγ ∀ g �= 0 gγ /∈ {0,�}
(3.11)

(gα − �) DαDβ − gα DβDα = xβDα

gα DαDγ − (gα − �) DγDα = xγDα

g DβDγ − (g − �) DγDβ = xγDβ − xβDγ ∀ g �= 0 gα /∈ {0,�}
(3.12)

B(3)

g DαDβ − (g − �) DβDα = xβDα − xαDβ

gγ DαDγ = −xαDγ

(gγ − �) DβDγ = −xβDγ ∀ g �= 0 gγ /∈ {0,�}
(3.13)

B(4)

(gα − �) DαDβ = xβDα

gα DαDγ = xγDα

g DβDγ − (g − �) DγDβ = xγDβ − xβDγ ∀ g �= 0 gα /∈ {0,�}.
(3.14)

The algebras (3.11) and (3.12) are just different presentations of the algebra B(1) (one has
to make the substitution β ↔ γ in equation (3.11) and α ↔ β in equation (3.12)).
The relation between the algebras B(3) and B(4) is less trivial (therefore we keep them
as different cases in classification). One can obtain the relations for the B(3) algebra by
inverting the order of all products in the B(4) algebra (equations (3.14)), i.e. by reading
the relations (3.14) from the right to the left and changing the signs of all x. That means,
the algebras B(3) and B(4) describe mirror (left–right) symmetric physical processes.
The algebras B(3) and B(4) are completely different from B(2). Even the number of
independent rates in cases B(3) and B(4) is not the same as in B(2).

Case C. Two of the coefficients xα , xβ and xγ are equal to zero.
In this case only one of the equations (2.5)–(2.10) remains nontrivial and the analysis

becomes straightforward. Below we present the relations for the type C algebras with xα �= 0,
xβ = xγ = 0. The expressions for the cases xβ �= 0, xα = xγ = 0 and xγ �= 0, xα = xβ = 0
can be obtained by the substitutions α ↔ β and, respectively, α → γ → β → α in (3.15)
and (3.16):

C(1)

gβ DαDβ − (gβ − �) DβDα = −xαDβ

gγ DαDγ − (gγ − �) DγDα = −xαDγ

gβγ DβDγ − gγβ DγDβ = 0 ∀ gβ, gγ , gβγ �= 0

(3.15)

C(2)

gαβ DαDβ − gβα DβDα = −xαDβ

gαγ DαDγ − gγα DγDα = −xαDγ

gβγ DβDγ = 0 ∀ gαβ, gαγ , gβγ �= 0.

(3.16)

We observe that for gγβ = 0, the algebra (3.15) is a special case of the algebra (3.16). For the
sake of convenience (see section 4), we will not stress this observation any further.

Notice that in case� �= 0 shifting the generator Dα: Dα → Dα−xα/�, in equation (3.15)
one obtains

gβ DαDβ − (gβ − �) DβDα = 0

gγ DαDγ − (gγ − �) DγDα = 0

gβγ DβDγ − gγβ DγDβ = 0

(3.17)
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which brings the C(1) algebra to the subcase of a family of quantum hyperplanes (see case
D below)6. If one thinks of applications to stochastic processes, the shift we made is not
an innocent one since for gβγ = gγβ , the algebra (3.15) has representations with traces (for
example, the one-dimensional representation given by the shift) whereas the algebra (3.17)
has none.

A useful algebra (not of PBW type) is obtained if one takes not only gγβ = 0 but also
gβγ = 0 in the algebra C(2) given by equation (3.16). In this way one obtains the algebra used
in [2].

Case D. All the coefficients xα , xβ and xγ are equal to zero.
In this case we obtain the algebra of Manin’s quantum hyperplane [16] corresponding to

multiparametric Drinfeld–Jimbo R-matrix [17]

D gab DaDb − gbaDaDb = 0 ∀ a, b ∈ {α, β, γ } a < b gab �= 0. (3.18)

A different point of view in understanding some of the algebras presented here is discussed
in appendix A.

4. Diffusion algebras with N > 3 generators

While classifying the PBW-type algebras (1.11) with more then 3 generators one meets the
combinatorial problem of consistently combining several minimal subalgebras generated by
triples {Dα,Dβ,Dγ } (each of these subalgebras belonging to one of the types A–D listed in
section 3) to a larger algebra. In this section we shall first construct several basic series of
diffusion algebras being extensions of the AI , AII , B(1)−(4), C(1) and D-type algebras from
the previous section. The C(2)-type triples will appear later on in our considerations. There is
a deep reason behind our choice of starting first with the algebra C(1) and taking into account
the algebra C(2) later. In this way one can more easily state the theorem presented at the end
of this section which forms the central part of our work. A proof of this theorem will be given
elsewhere.

In section 3 we have shown that the classification of diffusion algebras with N =
3 generators depends essentially on the number of nonvanishing parameters xα in the
ansatz (1.11). The same is true for general N . Therefore we shall split the set {α} labelling
different species of particles (= different generators Dα) into two subsets {α} = {i} ∪ {a}.
From now on we assign letters i, j , k, etc to the indices of the first subset and assume that
xi, xj , xk, . . . �= 0. The indices of the second subset are denoted by letters a, b, c, etc and it is
implied that xa = xb = xc = · · · = 0. Let N1 and N0 denote the number of elements of the
first and second subsets. Clearly, N0 + N1 = N—the total number of indices of both kinds.

We should stress however that N1—the number of nonzero x—is the most noticeable but
not the only relevant information for the classification. A supplementary information is given
by a number of nonzero bulk rates gαβ in the defining relations of the algebras (cf cases AI and
AII , B(1) and B(2), or C(1) and C(2) from section 3) and the mutual arrangement of the indices
{i} and {a} in the alphabetic order (see equation (2.1) and the definition of the algebras B(2),
B(3) and B(4) from section 3).

Algebras of type A. We shall start by considering the algebras with the number N1 of nonzero
x not less than 3—we call them algebras of type A. Obviously, any such algebra contains a

6 Conversely, using the linear shifts of generators D′
i = Di + ui , ∀ i ∈ {α, β, γ } in the D-type algebra (3.18) and

demanding the resulting relations to agree with the diffusion algebra ansatz (1.11) one recovers the C(1)-type algebras
only.
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minimal subalgebra of type AI , or AII . Consequently, these algebras are naturally obtained
by a sequence of consistent (in a sense of diamond conditions) extensions starting with the
N = N1 = 3 algebras (3.5) or (3.6) and adding one new generator Dα at each step of the
iteration.

It is suitable to begin the extension procedure with the generators whose indices lie in the
subset {i}. At the first step one adds a fourth generator, say Dl , to the triple {Di ,Dj ,Dk} (recall,
once again, that xi, xj , xk, xl �= 0). The resulting algebra contains four minimal subalgebras
of the types either AI , or AII . An easy check shows that it is possible to combine only triples
of the same type. Continuing the extension procedure one finally obtains algebras with N1

generators for which all the minimal subalgebras are of the same type, either AI or AII . The
defining relations for these two types of diffusion algebras—AI (N1) and AII (N1)—are given
by the equations (3.5) and, respectively (3.6), with i < j spanning the whole set {i}.

We continue the extension procedure adding to the algebras AI,II (N1), N0 new generators
with their indices lying in the subset {a}. First, we add one generator, say Da , and take care
that all the newly appeared triples {Da,Di ,Dj } belong to one of the algebras of type B (see
equations (3.9), (3.10), (3.13) and (3.14)). Next, adding a second generator, say Db, we again
require that all the triples {Db,Di ,Dj } are of type B and, moreover, demand that the triples
{Da,Db,Di} are the generators of a CI -type algebra (3.15). Adding new generators we also
have to impose D-type algebraic relations for the triples {Da,Db,Dc}. As a result, we obtain
two different extensions for the algebra AI (N1)

A
(1)
I (N1, N0)

g [Di , Dj ] = xj Di − xi Dj ∀ i, j ∈ {i} : i �= j g �= 0

ga [Da, Di] = xi Da ∀i ∈ {i} ∀a ∈ {a} ga �= 0

gab DaDb − gbaDbDa = 0 ∀ a, b ∈ {a} : a < b gab �= 0.

(4.1)

A
(2)
I (N1, N0)

g [Di , Dj ] = xj Di − xi Dj ∀ i, j ∈ {i} : i �= j g �= 0

g+ Di Db = −xi Db ∀(i ∈ {i}, b ∈ {a}) : i < b g+ �= 0

g− Da Di = xi Da ∀(i ∈ {i}, a ∈ {a}) : i > a g− �= 0

where g− = −g+ if there exist Di,Da,Db : a < i < b

gab DaDb − gbaDbDa = 0 ∀ a, b ∈ {a} : a < b gab �= 0.

(4.2)

Here and in what follows we indicate two integers N0 and N1—the numbers of indices in
the sets {i} and {a}, respectively—in braces to specify the type of algebra. As the reader can
notice looking closely at equation (4.2), specifying N0 and N1 one obtains several algebras all
denoted by A

(2)
I (N1, N0). We did not introduce a different notation for each algebra in order to

simplify the notations. We adopted the same attitude also for other algebras described below
(see equations (4.3) and (4.5)).

The algebra AII (N1) possesses a unique extension

AII (N1, N0)

gij Di Dj = xj Di − xi Dj ∀ i, j ∈ {i} : i < j

gi+ Di Db = −xi Db ∀(i ∈ {i}, b ∈ {a}) : i < b

gi− Da Di = xi Da ∀(i ∈ {i}, a ∈ {a}) : i > a.

Here gij := gi − gj gi+ := g+ + gi gi− := g− − gi

where for all i : gi �= −g+ gi �= g− gi �= gj if i �= j

and g− = −g+ if there exists Di,Da,Db : a < i < b.

gab DaDb − gbaDbDa = 0 ∀ a, b ∈ {a} : a < b gab �= 0.

(4.3)

The parameters g+ and g− in algebras A(2)
I (N1, N0) and AII (N1, N0) remain independent
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provided that mutual order of indices of the subsets {i} and {a} (and hence the order of the
generators Di and Da , see (2.1)) is as follows:

i1 < i2 < · · · < ik < a1 < a2 < · · · < aN0 < ik+1 < ik+2 < · · · < iN1 .

Only in this case all the B-type minimal subalgebras in the algebras (4.2) and (4.3) belong
to the type B(2). In the presence of B(3), or B(4) type triples the parameters g+ and g− are
constrained by the condition g+ + g− = 0 (keep in mind that for stochastic processes all rates
have to be non-negative).

Algebras of type B. We now consider the case where the set {i} contains exactly two indices
(N1 = 2), say, i and j , i < j . To obtain such algebras—we call them the algebras of type B—
one should consider consistent extensions of the B-type triples (3.9), (3.10), (3.13) and (3.14)
by (N0 − 1) generators with their labels in the set {a}.

Starting with theB(1)-type triple {Di ,Da1 ,Dj }, the only possibility is to add new generators
Da2 , Da3 , etc such that all the minimal sub algebras {Di ,Da2 ,Dj }, {Di ,Da3 ,Dj }, etc satisfy
again B(1)-type relations (3.9). In this situation, we can arrange the alphabetic order of the
generators as follows: Dj > Da1 > Da2 > · · · > DaN0

> Di (cf with the comment below
equation (3.14)). So it is natural to put in this case i = 0, j = N − 1. The extended algebra
B(1)(2, N0) reads

g D0 DN−1 − (g − �) DN−1 D0 = xN−1 D0 − x0 DN−1 g �= 0

ga D0 Da − (ga − �) Da D0 = −x0Da

ga Da DN−1 − (ga − �) DN−1 Da = xN−1 Da ∀ 1 < a < N−1 ga �= 0

gab Da Db − gbaDb Da = 0 ∀ a, b ∈ {a} : a < b gab �= 0.

(4.4)

The situation becomes different for the other B-type triples (3.10), (3.13) and (3.14).
Extending these algebras one can get algebras containing all the B(2), B(3) and B(4)-type
minimal subalgebras. Therefore we introduce a unified notation B(2)(2, n<, n, n>) for
extensions of the triples B(2) − B(4). Here n< + n + n> = N0 and a mutual order of the
indices i, j and the indices from the set {a} is as follows:

a1 < · · · < an< < i < a(n<+1) < · · · < a(n<+n) < j < a(n<+n+1) < · · · < aN0 .

The algebra B(2)(2, n<, n, n>) reads

g Di Dj − (g − �) Dj Di = xj Di − xi Dj g �= 0

g+ Di Da = −xi Da (g+ − �) Dj Da = −xj Da ∀ a > j

(g− − �)Da Di = xi Da g− Da Dj = xj Da ∀ a < i

g+ Di Da = −xi Da g− Da Dj = xj Da ∀ i < a < j

where g+ �=
{

0 if n< < N0

� if n> > 0
g− �=

{
0 if n> < N0

� if n< > 0

and g+ + g− = � if among the numbers n<, n, n> there are two nonzeros

gab DaDb − gbaDbDa = 0 ∀ a, b ∈ {a} : a < b gab �= 0.

(4.5)

The algebra B(2)(2, n<, n, n>) contains n< B(4)-type minimal subalgebras ({Da,Di , Dj } for
a < i), n B(2)-type minimal subalgebras ({Di ,Da,Dj } for i < a < j ) and n> B(3)-type triples
({Di ,Dj ,Da} for a > j ).
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Algebras of type C. Next, we consider algebras with only one index i in the subset {i}, let
us call them the algebras of the type C. These algebras arise from extension of the CI triple
{Di ,Da,Db} by (N0 −2) generators Dc, . . . labelled by indices from the subset {a}. Checking
the consistency of such an extension is straightforward and, therefore, we shall just present
directly the resulting algebra

C(1, N0)

ga Di Da − (ga − �) Da Di = −xi Da

where ga �= 0 if i < a and ga �= � if a < i

gab DaDb − gbaDbDa = 0 ∀ a, b ∈ {a} : a < b gab �= 0.

(4.6)

As in case of the C(1)-type triple (3.15), for � �= 0 one can reduce the algebra (4.6) to a
subcase of the family of quantum hyperplanes (see case D below) shifting the generator Di :
Di → Di − xi/�. Nevertheless, as will be shown in the theorem given below, it is useful to
keep the definition given by equation (4.6) for the algebra C(1, N0) since in this way one can
use it as a building block for the construction of new algebras. In the new algebras the shift
will not be possible anymore.

Note that, unlike all the previous cases, one can consider the algebra C(1, 1) produced by
a pair of generators. We shall use this possibility in the theorem stated below. For instance, the
C(2) algebra (3.16) can be constructed as a combination of two C(1, 1) algebras by a blending
procedure described in the theorem given below. Further examples of an application ofC(1, 1)
algebras are given in appendix B (see the cases 17 and 18).

Case D. The D algebras—the algebras with no indices in the subset {i}—are represented by
a family of N = N0-dimensional quantum hyperplanes

D(0, N0) gab DaDb − gbaDbDa = 0 ∀ a, b ∈ {a} : a < b gab �= 0. (4.7)

Now we are ready to complete a classification scheme. To do so one needs to take into
consideration the possibility of using C(2)-type triples in the algebra extension process. As a
result one derives a procedure to obtain all the the diffusion algebras which is described in the
following theorem.

Theorem. A diffusion algebra has N1 generators Di , where one assumes xi �= 0, (i =
1, 2, . . . , N1) and N0 generators Da , with xa = 0, (a = 1, 2, . . . , N0). If we do not distinguish
between the two kinds of generators, we denote them by Dα , (α = 1, 2, . . . , N = N0 + N1).

If N1 = 0, the algebras are D(0, N0) (see equation (4.7)).
If N1 �= 0, all diffusion algebras can be obtained by a blending procedure using the

algebras (4.1)–(4.6). The blending procedure can be described as follows.
Consider two of the algebras (4.1)–(4.6), denoted by X(N1, N

(x)
0 ) and Y (N1, N

(y)

0 ), both
having the same number of generators Di which satisfy the same relations among themselves in
the two algebras, and generators Dax (respectively Day ). Through blending, one can obtain a

new diffusion algebraZ(N1, N
(x)
0 +N(y)

0 = N0)with generators Di and Da , (a = 1, 2, . . . , N0).

Since the X(N1, N
(x)
0 ) and Y (N1, N

(y)

0 ) algebras are both of PBW type, the N
(x)
0 indices

(respectively the N
(y)

0 indices) are in a given alphabetic order. We blend now the N
(x)
0 and

N
(y)

0 indices together in an arbitrary alphabetic order but respecting the order for the N
(x)
0

indices (respectively the N(y)

0 indices) which are fixed in the algebra X(N1, N
(x)
0 ) (respectively

Y (N1, N
(y)

0 )). The alphabetic order of theN(x)
0 indices in respect to theN1 indices (respectively

the N
(y)

0 indices in respect to the N1 indices) given again by the two algebras X(N1, N
(x)
0 )

and Y (N1, N
(y)

0 ), has also to be respected. For each alphabetic order of the N0 indices one
obtains a new algebra in the following way. The relations among the generators Di and those
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among the generators Di and Dax (respectively among Di and Day ) coincide with the relations

in the algebras X(N1, N
(x)
0 ) and Y (N1, N

(y)

0 ). The remaining relations among the generators
Dax and Day are

DaxDay = 0 ∀ ax, ay : ax < ay

DayDax = 0 ∀ ax, ay : ax > ay.
(4.8)

A ‘blended’ algebra can now be blended with one of the algebras (4.1)–(4.6) and one can
obtain a new algebra.

It is important to stress that through the blending procedure one can obtain the same algebra
using different blendings. Therefore what we have is a construction rather than a classification
of the diffusion algebras.

We would like to point out that it is easy to see that one can blend together only algebras of
the same type: A(1)

I or A(2)
I with algebras A(1)

I or A(2)
I , AII with AII , B(1) or B(2) with B(1) or

B(2) and C with C. One can show that blending together two A
(1)
I (respectively B(1)) algebras

leads to A
(1)
I (respectively B(1)) algebras. Therefore one can use an A

(1)
I (respectively B(1))

algebra only once during blending procedure. At the same time the algebras A(2)
I (respectively

B(2)) can be blended any number of times.
Let us show an application of this theorem. Consider the algebra

g0a D0 Da − ga0 Da D0 = −x0 Da a = 1, 2, . . . , N − 1 (4.9)

gab Da Db = 0, ∀ a, b : 1 � a < b � N − 1. (4.10)

This algebra is obtained taking N − 1 copies of the algebra C(1, 1) ({i} = {0}, {a} =
{1, 2, . . . , N − 1}) and blending them together. Taking N = 3 and 4 one recovers the algebras
given by equation (3.16) respectively equations (B.25), (B.26). If in equation (4.10) one takes
the rates gab = 0 one recovers the algebra discussed in [2].

5. Discussion

We have defined diffusion algebras. Those are PBW algebras with N generators satisfying the
relations (1.11). These algebras are useful to find stationary states of the stochastic processes
given by the rates gαβ . For the N species problem one finds several series of algebras which
might be useful in applications using equation (1.3) for a ring and equations (1.7) and (1.8) for
open systems. Much work is still left. For example one has to find which boundary conditions,
if any, are compatible with each of the algebras. We would like to stress that all the cases which
were used up to now for applications are special cases of our construction.

An open and relevant question is: do non-PBW type ‘physically meaningful’ algebras
satisfying equation (1.11) exist7. Such algebras could eventually represent ‘exceptional
algebras’ similar to those which appear in the theory of simple Lie algebras or superalgebras.

An interesting and unsolved problem is the connection between the diffusion algebras and
the so called quantum Lie algebras (see e.g. [18]) which look similar and which are not fully
investigated and classified. In order to show that such a connection might be possible we will
give here two examples of quantum Lie algebras related to the so-called Cremmer–Gervais R
matrix [19]

gβ DαDβ − (gβ − �) DβDα = −xαDβ

g DαDγ − (g − �) DγDα + w (Dβ)
2 = xγDα − xαDγ

gβ DβDγ − (gβ − �) DγDβ = xγDβ

(5.1)

7 These algebras can be finite or infinite-dimensional.
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and

gαβ DαDβ = −xαDβ

gαγ DαDγ − gγα DγDα + w (Dβ)
2 = xγDα − xαDγ

gβγ DβDγ = xγDβ.

(5.2)

They are clearly extensions of the B(1) and B(2) algebras to which the term (Dβ)
2 has been

added (w is an arbitrary parameter). The algebras (5.1) and (5.2) are of PBW type. Quantum
Lie algebras can also be relevant in a different context un-related to stochastic processes. As
pointed out in [20], quadratic algebras are also useful to describe the ground states of one-
dimensional quantum chains in equilibrium statistical physics if it happens that the ground
states have energy zero. This is a whole area which is worth exploring.

Before closing this paper, we would like to mention a natural extension of our results. The
starting point of our investigation were the processes given in equation (1.1) which are related
to quantum hyperplanes (take all the x equal to zero in equation (1.11)). One can consider more
general stochastic processes in which the bulk rates are related to quantum superplanes [16].
In these cases one obtains equations which generalize equation (1.11) (see [9]). This would
lead us to something to which one could coin the name of ‘reaction-diffusion algebras’. For
the time being this is no more than a nice thought.
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Appendix A. Comments on diffusion algebras with three generators

We consider the relations (1.11) in the case when we have only three generators

g01D0D1 − g10D1D0 = x1 D0 − x0 D1

g20D2D0 − g02D0D2 = x0 D2 − x2 D0

g12D1D2 − g21D2D1 = x2 D1 − x1 D2

(A.1)

and look for the case when the rates satisfy the condition

�012 = g01 − g10 + g12 − g21 + g20 − g02 = 0. (A.2)

It is trivial to verify [12] that the 1 × 1 matrices (c-numbers)

Di = xi

fi
(i = 0, 1, 2) (A.3)

where

f1 = f0 + g01 − g10 f2 = f0 + g02 − g20 (A.4)

verify the relations (A.1) (f0 is an arbitrary parameter). One can use (A.3) in order to compute,
using equation (1.3), the probability distribution on a ring. The probability distribution one
obtains for the stationary state is trivial (one has no correlations). The physics of the stationary
state can however be interesting if one takes an open system. We then have to use equation (1.8)
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and the one-dimensional representation of (A.1) is not of much help. If the rates satisfy only
the condition (A.2) it is not clear if one does not have only the one-dimensional representation.
At this point one can understand why we are interested in algebras of PBW type. For algebras
of PBW type, we can be sure that one gets other representations (at least the regular one). The
price to pay is that we will get more constraints on the rates than those given by equation (A.2).
In order to get algebras of PBW type compatible with the relation (A.2), it is useful to write
the diamond condition (2.4) in a different way:

�012 (x0 g21 D2 D1 + x1 g20 D2 D0 + x2 g21 D2 D1 + x1 x2 D0 − x0 x1 D2)

+ x0 g12 g21 [D1, D2] + x1 g02 g20 [D2, D0]

+ x2 g01 g10 [D0, D1] = 0. (A.5)

We now take into account equation (A.2). There are several solutions of f (A.5):

(a) gij = g. (A.6)

This gives (using equation (A.1)) the algebra AI (see equation (3.5)):

(b)
g21 = g20 = g10 = 0

g02 = g01 + g12.
(A.7)

This gives the algebra AII (see equation (3.6)):

(c)
g20 = g10 = 0

[D1, D2] = 0.
(A.8)

This gives actually again the algebra AII , defined in equation (3.6) with the substitution

g12 − g21 −→ g12. (A.9)

This different derivation of the algebra AII has a bonus: we have learned that we can take the
quotient given by the second relation in equation (A.8) of this algebra:

(d)

x0 = 0

g01 = g02 = 0

g12 = g g21 = g − �

g10 = gγ g20 = gγ − �

(A.10)

which is the algebra B(3) (see equation (3.13)).

(e)

x0 = 0

g10 = g20 = 0

g12 = g g21 = g − �

g01 = gα − � g02 = gα

(A.11)

which is the algebra B(4) (defined in equation (3.14)).
Since the algebras AI , AII , B(3) and B(4) are all derived starting from equation (A.1) with

the conditions (A.2), all these algebras have at least a one-dimensional representation. When
the classification of the relations (A.1) for which a trace operation exists was done [12], there
was no need to consider them separately since for the trace operation it is enough to have the
expressions (A.3) and (A.4).
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Appendix B. Diffusion algebras with positive rates for N = 4

Here we list all the diffusion algebras withN = 4 generators which can be useful for stochastic
processes with four species of particles (one can choose all the rates non-negative).

We first describe those of the algebras from the seven series described in section 4 (see
equations (4.1)–(4.7)). For the reader’s convenience we point out all the N = 3 subalgebras
for each algebra in the list. The reader may be surprised by the fact that in the list which
follows the same symbol will denote two algebras (see equations (B.3) and (B.5)), this is due
to the fact that as can be seen already in equations (4.2) and (4.3) the same notation is used for
several algebras.

(1) AI (4):

g [Di , Dj ] = xj Di − xi Dj i, j = 0, 1, 2, 3. (B.1)

All the N = 3 subalgebras of this algebra (i.e., the subalgebras generated by different
triples of the generators Di , i = 0, 1, 2, 3) are of type AI (3.5).

(2) A
(1)
I (3, 1):

g [Di , Dj ] = xj Di − xi Dj i, j = 1, 2, 3

go [D0, Di] = xi D0.
(B.2)

This algebra contains the AI subalgebra {D1,D2,D3} and three B(1) subalgebras (3.9) in
which one takes � = 0 and which are generated by the triples {D0,D1,D2}, {D0,D1,D3}
and {D0,D2,D3}.

(3) A
(2)
I (3, 1) (two algebras):

g [Di , Dj ] = xj Di − xi Dj

go D0 Di = xi D0

and

g [Di , Dj ] = xj Di − xi Dj

g+ D1 D0 = −x1 D0

g− D0 D2,3 = x2,3 D0

i, j = 1, 2, 3. i, j = 1, 2, 3.

(B.3)

Both algebras presented in (B.3) contain the AI triple {D1,D2,D3} and the B(4) triple
{D0,D2,D3} (see (3.14) specialized to� = 0). The triples {D0,D1,D2} and {D0,D1,D3}
are of B(4) type for the first case in (B.3) and they belong to the type B(2) for the last case
(see (3.10) with the special choice gαγ = gγα = g).
There are two more algebras of type A

(2)
I (3, 1). Their defining relations are obtained by

inverting the order of the generators in all the products in formulae (B.3). This means that
the last pair of algebras would describe physical processes which are just mirror reflections
of the processes corresponding to the algebras (B.3).

(4) AII (4).

gij Di Dj = xj Di − xi Dj where i, j = 0, 1, 2, 3 and i < j. (B.4)

Here gij := gi − gj and g0 > g1 > g2 > g3 so that gij > 0 for all i < j .
The algebra (B.4) contains only AII subalgebras (3.6).

(5) AII (3, 1) (two algebras):

gij Di Dj = xj Di − xi Dj

g0i D0 Di = xi D0

and

gij Di Dj = xj Di − xi Dj

g+ D1 D0 = −x1 D0

g−2 D0 D2 = x2 D0

g−3 D0 D3 = x3 D0.

(B.5)
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Here both i and j take the values 1, 2, or 3; furthermore one has i < j in the first relations
in (B.5); gij := gi − gj , g0i := g0 − gi and g−i := g− − gi , where g0 > g1 > g2 > g3

and g− > g2.
The algebras in (B.5) contain the AII triple {D1,D2,D3} and the B(4) triple {D0,D2,D3}
(see (3.14) with g = �). The triples {D0,D1,D2} and {D0,D1,D3} are ofB(4) type for the
first case in (B.5) and they belong to type B(2) for the last case (see (3.10) with gγα = 0).
One can construct two more algebras which are mirror partners of those listed in (B.5) (cf
the case 3).

(6) B(1)(2, 2).

g D0 D3 − (g − �) D3 D0 = x3 D0 − x0 D3

ga D0 Da − (ga − �) Da D0 = −x0 Da

ga Da D3 − (ga − �) D3 Da = x3 Da a = 1, 2

g12 D1 D2 − g21 D2 D1 = 0.

(B.6)

This algebra contains two B(1) triples (3.9): {D0,D1,D3} and {D0,D2,D3}, and two C(1)

triples (3.15): {D0,D1,D2} and {D1,D2,D3}.
(7) B(2)(2, 0, 2, 0).

g D0 D3 − (g − �) D3 D0 = x3 D0 − x0 D3

g+ D0 Da = −x0 Da

g− Da D3 = x3 Da a = 1, 2

g12 D1 D2 − g21 D2 D1 = 0.

(B.7)

This algebra contains twoB(2) triples (3.10): {D0,D1,D3} and {D0,D2,D3}, and twoC(1)

triples: {D0,D1,D2} and {D1,D2,D3}, where in equation (3.15) one takes gβ = gγ = �,
respectively gβ = gγ = 0.

(8) B(2)(2, 2, 0, 0).

g D2 D3 − (g − �) D3 D2 = x3 D2 − x2 D3

(h − �) Da D2 = x2 Da

h Da D3 = x3 Da a = 0, 1

g01 D0 D1 − g10 D1 D0 = 0.

(B.8)

This algebra contains twoB(4) triples (3.14): {D0,D2,D3} and {D1,D2,D3}, and twoC(1)

triples (3.15) with gβ = gγ = 0: {D0,D1,D2} and {D1,D2,D3}.
The algebra B(2)(2, 0, 0, 2) is a mirror partner of the algebra above.

(9) C(1, 3):

ga D0 Da − (ga − �) Da D0 = −x0 Da

gab Da Db − gba Db Da = 0 a, b = 1, 2, 3.
(B.9)

This algebra contains three C(1) triples {D0,D1,D2}, {D0,D1,D3} and {D0, D2,D2}, and
the triple {D1,D2,D3} of the type D (3.18).
For � �= 0, one can do the shift D0 → D0 − x0/� and bring this algebra to the subcase
of the family of quantum hyperplanes (B.10).

(10) D(0, 4) algebra, or quantum hyperplane:

gab Da Db − gba Db Da = 0 a, b = 0, 1, 2, 3. (B.10)

Obviously, all the triples here are of D type.
Next, we use the procedure of blending several diffusion algebras as described in the
theorem at the end of section 4. There is no need to point out anymore the N = 3
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subalgebras for each example separately, since the pair of main N = 3 constituents which
are blended to produce an N = 4 algebra are mentioned explicitly in each case. The
remaining two N = 3 subalgebras always belong to the type C(2) (3.16).
Note that blending algebras of the types AI and AII produces only examples with N � 5.
One can get N = 4 diffusion algebras by blending any two of the following N = 3
type B algebras: B(1)(2, 1) (≡B(1) in the notations of section 3), B(2)(2, 1, 0, 0) (≡B(4)),
B(2)(2, 0, 1, 0) (≡B(2)), and B(2)(2, 0, 0, 1) (≡B(3)). The results are listed below.

(11) Gluing B(1) (with generators {D0,D1,D3}) and B(2) (with generators {D0,D2, D3}) one
obtains

g D0 D3 − (g − �) D3 D0 = x3 D0 − x0 D3

g1 D0 D1 − (g1 − �) D1 D0 = −x0 D1

g1 D1 D3 − (g1 − �) D3 D1 = x3 D1

g+ D0 D2 = −x0 D2 g− D2 D3 = x3 D2.

(B.11)

This set of relations should be supplemented by the condition

g12 D1 D2 = 0. (B.12)

The algebra (B.11), (B.12) has a mirror partner with an opposite order of indices 1 and 2
(one uses the condition g21D2D1 = 0 instead of (B.12) for it).

(12) Gluing B(2) (with generators {D0,D1,D3}) and B(2) (with generators {D0,D2,D3}) one
obtains

g D0 D3 − (g − �) D3 D0 = x3 D0 − x0D3

g+ D0 D1 = −x0 D1 g− D1 D3 = x3 D1

h+ D0 D2 = −x0 D2 h− D2 D3 = x3 D2

(B.13)

and

g12 D1 D2 = 0. (B.14)

(13) Gluing B(1) (with generators {D1,D2,D3}) and B(4) (with generators {D0,D2,D3}) one
obtains

g D2 D3 − (g − �) D3 D2 = x3 D2 − x2 D3

(h − �) D0 D2 = x2 D0 h D0 D3 = x3 D0

(g1 − �) D1 D2 − g1 D2 D1 = x2 D1

g1 D1 D3 − (g1 − �) D3 D1 = x3 D1

(B.15)

and either g01 D0 D1 = 0 or g10 D1 D0 = 0. (B.16)

Gluing the algebras B(1) and B(3) produces a mirror partner of this algebra.
(14) Gluing B(4) (with generators {D1,D2,D3}) and B(4) (with generators {D0,D2,D3}) one

obtains

g D2 D3 − (g − �) D3 D2 = x3 D2 − x2 D3

(h − �) D0 D2 = x2 D0 h D0 D3 = x3 D0

(f − �) D1 D2 = x2 D1 f D1 D3 = x3 D1

(B.17)

and

g01 D0 D1 = 0. (B.18)

Gluing the algebras B(3) and B(3) produces a mirror partner of this algebra.
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(15) Gluing B(3) (with generators {D1,D2,D3}) and B(4) (with generators {D0,D1,D2}) one
obtains

g D1 D2 − (g − �) D2 D1 = x2 D1 − x1 D2

h D1 D3 = −x1 D3 (h − �) D2 D3 = −x2 D3

(f − �) D0 D1 = x1 D0 f D0 D2 = x2 D0

(B.19)

and

g03 D0 D3 = 0. (B.20)

(16) Gluing B(2) (with generators {D1,D2,D3}) and B(4) (with generators {D0,D1,D3}) one
obtains

g D1 D3 − (g − �) D3 D1 = x3 D1 − x1 D3

g+ D1 D2 = −x1 D2 g− D2 D3 = x3 D2

(h − �) D0 D1 = x1 D0 h D0 D3 = x3 D0

(B.21)

and

g02 D0 D2 = 0. (B.22)

Gluing the algebras B(2) and B(3) produces mirror partner of this algebra.
Gluing a pair of B(1) algebras gives a special case of the B(1)(2, 2) algebra (see case 6
above) with g21 = 0.
There are two other possibilities to blend the C type algebras C(1, 2) and C(1, 1) (for
their definition see equation (4.6)) into a N = 4 diffusion algebra.

(17) Gluing C(1, 2) (with generators {D0,D1,D2}) and C(1, 1) (with generators {D0,D3})
one obtains

ga D0 Da − (ga − �) Da D0 = −x0 Da a = 1, 2

g12 D1 D2 − g21 D2 D1 = 0

g03 D0 D3 − g30 D3 D0 = −x0 D3

(B.23)

with either one of the following two sets of conditions

g13 D1D3 = g23 D2D3 = 0 or g13 D1D3 = g32 D3D2 = 0. (B.24)

In this algebra, besides the C(1) triple {D0,D1,D2} there are two C(2) triples {D0,D1,D3}
and {D0,D2,D3} and the D triple {D1,D2,D3}.

(18) Gluing three copies of C(1, 1) algebra one obtains

g0a D0 Da − ga0 Da D0 = −x0 Da a = 1, 2, 3 (B.25)

and

g12 D1D2 = g13 D1D3 = g23 D2D3 = 0. (B.26)

This algebra contains one D type triple {D1,D2,D3} and all the other triples are of the
type C(2).
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